

Question		Expected Answers	Marks	Additional Guidance
	iii	Mention of circles / spheres / shells The position of the car is where the circles intersect / trilateration mentioned	B1	Note: This mark can be scored if a diagram shows circles / arcs (no label required) Note: This mark can be scored on a diagram if it shows intersecting circles / arcs and the intersection point is marked 'car'
	Total	$\mathbf{1 2}$		

Q4	Expected Answers	Marks	Additional guidance
(a)(i)	Force/acceleration is proportional to displacement (from equilibrium position) (Resultant force) force/acceleration is (always) towards equilibrium position (WTTE, e.g. allow fixed point).	B1	Allow force/acceleration is in opposite direction to the displacement. Allow acc $\propto x$, provided x is identified as the displacement for $1^{\text {st }}$ mark. $2^{\text {nd }}$ mark only scored if -ve sign used and explained.
(a)(ii)	True; False False; False	B2	-1 for each error stop at zero Assume \checkmark means true and X means false Do not credit blank spaces
(b)	Measurements: angle measured with protractor stated or shown on the diagram stop-watch/ms timer/data-logger to measure time stated or shown on the diagram Conclusion: compare periods for different angles stated/implied OR plot period against angle major difficulty: angle of swing decreases during the timing of the swing solution: e.g. measure time for $1 / 4,1 / 2$ or 1 swing accurately (using electronic timer/datalogger) OR use data logger with motion sensor to record many swings and analyse how the period changes over time OR video the motion with onscreen timer and analyse	B1 B1 B1 M1 A1	Allow ruler used to measure initial and subsequent displacement/amplitude if explained. Allow table of results with correct column headings i.e. at least angle and period Do not allow 'time is short so measure $n T$ and divide by n to reduce (\%) error'.(WTTE)
	Total	9	

	stion	Expected Answers	Marks	Additional guidance
5	(a)	Any four from 1 to 5: 1. Most of the alpha particles went straight through (some deviated through small angles) 2. Hence most of the atom is empty space 3. Some / a very small number of alpha particles were scattered / repelled through large angles / angles more than 90° 4. This showed the existence of (a tiny) positive nucleus 5. The size of the nucleus is about $10^{-14} \mathrm{~m}$ \mathscr{Q} QWC: Award a mark for one conclusion correctly linked to an observation	$\mathrm{B} 1 \times 4$	Must use ticks on Scoris to show where the marks are awarded Allow: $10^{-15} \underline{m}$
	(b)	Any five from: Gravitational (force) This force is attractive AND is long-ranged / obeys ' $1 / r^{2}$ relationship' Strong (nuclear force/interaction) This force is attractive (at larger distances) or repulsive at short distances AND is short-ranged $/ \sim 10^{-14} \mathrm{~m}$ Electrostatic / electrical (force) / coulomb (force) This force is repulsive between protons / zero between neutrons / zero between protons and neutrons AND is long-ranged / obeys ' $1 / r^{2}$ relationship'	M1 A1 M1 A1 M1 A1	Allow: gravity Note: Do not allow 'inverse square law'; allow 'inverse square law with distance' Allow: Electromagnetic (interaction/force)

Question	Expected Answers	Marks	Additional guidance	
(c)	(i)	mass $=235 \times 1.7 \times 10^{-27}\left(=3.995 \times 10^{-25} \mathrm{~kg}\right)$ volume $=\frac{4}{3} \pi \times\left(8.8 \times 10^{-15}\right)^{3}\left(=2.855 \times 10^{-42} \mathrm{~m}^{3}\right)$ density $=$ mass/volume density $=1.4 \times 10^{17}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$	C1	Allow: $1.66 \times 10^{-27} \mathrm{~kg}$ for mass of nucleon

Question			Answer	Marks	Guidance
6	(a)		Obtain a set of readings for: mass m, time period AND calculate frequency using $\underline{f=}$ I/T. Plot graphs of f against $1 / m$ AND f against $1 / \sqrt{ } m$ The graph which is a straight line through the origin provides the correct relationship Reference to one method of improving reliability eg counting more than 5 oscillations to find T or f taking repeat measurements of T or f (and average values) time oscillations from equilibrium position	B1 B1 B1 B1	Not number of oscillations in a set time Allow: product method using two or more points (B1) Select the relation which gives a constant product Allow: plot $\ln f$ against $\ln m \quad$ (B1) $\propto 1 / \sqrt{m}(\mathrm{~B} 1)$ gradient= -1 then $f \propto 1 / m$ or gradient $=-0.5$ then f
	(b)	(i)	$\begin{aligned} & v_{\max }=2 \pi f A=2 \pi\left(\frac{1}{1.2}\right) \times 36 \times 10^{-3} \\ & v_{\max }=\frac{3 \pi}{50} \quad(=0.188) \\ & K E_{\max }=\frac{1}{2} \times 0.4 \times\left(\frac{3 \pi}{50}\right)^{2} \\ & K E_{\max }=7.1 \times 10^{-3} \quad \text { (J) } \end{aligned}$	C1 C1 A1	Note: mark is for substitution
		(ii)	$\begin{aligned} & a_{\max }=(2 \pi f)^{2} A=\left[2 \pi\left(\frac{1}{1.2}\right)\right]^{2} \times 36 \times 10^{-3} \\ & a_{\max }=0.99\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: mark is for correct substitution

Questi	Answer	Marks	Guidance
(c)	Reference to : kinetic energy (of masses and spring), gravitational potential energy (of mass and spring), elastic (potential) energy / strain energy of spring KE: zero (at lowest point), increasing to max at equilibrium point, decreasing to zero (at highest point) GPE: increases (as masses rise from lowest to highest point) (clearly worded ora)(AW) strain / elastic energy: decreases (as masses rise from lowest to highest point) (clearly worded ora) (AW)	B1 B1 B1 B1	Note: mark to be awarded only if all 3 forms are quoted Note: potential must be spelled correctly throughout to score this mark
	Total	13	

